Fibers and ground substance, Connective tissue consists of cells and a matrix

Connective tissue consists of cells and a matrix (fibers and ground substance tissue). The cells include fibroblasts (the source of collagen and other fibers), plasma cells (the source of antibodies), macrophages (the cells responsible for phagocytosis), mast cells (the source of heparin and histamine), and a variety of transient blood cells: lymphocytes (B and T), eosinophils, basophils, and neutrophils (PMNs). B cells are involved in humoral immunity and T cells in cell-mediated immunity as well as humoral immunity (helper T cells). Neutrophils phagocytose bacteria; the dead neutrophils are a major component of pus. Basophils, like mast cells, release histamine although they originate from a different bone marrow stem cell. Eosinophils are involved in response to parasitic infection.
Connective tissue consists of cells and a matrix (fibers and ground substance tissue). The cells include fibroblasts (the source of collagen and other fibers), plasma cells (the source of antibodies), macrophages (the cells responsible for phagocytosis), mast cells (the source of heparin and histamine), and a variety of transient blood cells: lymphocytes (B and T), eosinophils, basophils, and neutrophils (PMNs). B cells are involved in humoral immunity and T cells in cell-mediated immunity as well as humoral immunity (helper T cells). Neutrophils phagocytose bacteria; the dead neutrophils are a major component of pus. Basophils, like mast cells, release histamine although they originate from a different bone marrow stem cell. Eosinophils are involved in response to parasitic infection.

Collagen at Connective tissue

Eosinophilic granules contain a crystalline core of major basic protein, which is toxic for parasites and histaminase, which breaks down histamine and limits the allergic response. Type I collagen and elastin make up the predominant fibers found in connective tissue. Ground substance tissue includes proteoglycans and glycoproteins that organize and stabilize the fibrillar network. Type II collagen is associated with hyaline cartilage; type III collagen forms the collagenous component of reticular connective tissue found in highly cellular organs, such as the liver and lymphoid organs. Type IV collagen forms a sheet-like meshwork or insoluble scaffolding of the basal lamina. Other types of collagen exist and include the fibril-associated collagens with interrupted triple helices (FACIT). Collagen fibrils are connected to other extracellular matrix molecules by the FACIT collagens.

Comments